
COP 3330: GUIs In Java – Part 1 Page 1 © Dr. Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2011

Introduction To GUIs and Event-Driven

Programming In Java – Part 1

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2011

COP 3330: GUIs In Java – Part 1 Page 2 © Dr. Mark Llewellyn

Java GUIs (Graphical User Interfaces)

• The overall design of the API for Java GUI

programming is an excellent example of how the

object-oriented design principle can be applied.

• You can clearly see the inheritance hierarchy

displayed in the GUI API in the UML diagram

on the next page.

COP 3330: GUIs In Java – Part 1 Page 3 © Dr. Mark Llewellyn

The Java GUI Hierarchy

Dimension

Font

FontMetrics

Component

Graphics

Object Color

Container

Panel Applet

Frame

Dialog

Window

JComponent

JApplet

JFrame

JDialog

Swing Components

in the javax.swing package

Lightweight

Heavyweight

Classes in the java.awt

package

1

LayoutManager

*

Recall UML notation for

composition – i.e. a

container can contain

many components.

Recall UML notation for aggregation

– i.e. a container “has-a” layout

manager.

COP 3330: GUIs In Java – Part 1 Page 4 © Dr. Mark Llewellyn

Java GUIs (Graphical User Interfaces)

• The GUI classes can be classified into three groups:
container classes, component classes, and helper classes.

• The container classes, such as JFrame, JPanel, and
JApplet, are used to contain other components.

• The GUI component classes, such as JButton,

JTextField, JTextArea, etc., are subclasses of
JComponent.

• The GUI helper classes, such as Graphics, Color,

Font, etc., are used to support GUI components.

• These are illustrated with UML class diagrams on the next
two pages.

COP 3330: GUIs In Java – Part 1 Page 5 © Dr. Mark Llewellyn

The Container Classes

Dimension

Font

FontMetrics

Component

Graphics

Object Color

Container

Panel Applet

Frame

Dialog

Window

JComponent

JApplet

JFrame

JDialog

Swing Components

in the javax.swing package

Lightweight

Heavyweight

Classes in the java.awt

package

1

LayoutManager

*

JPanel

Container classes can

contain other GUI

components.

COP 3330: GUIs In Java – Part 1 Page 6 © Dr. Mark Llewellyn

The GUI Helper Classes

Dimension

Font

FontMetrics

Component

Graphics

Object Color

Container

Panel Applet

Frame

Dialog

Window

JComponent

JApplet

JFrame

JDialog

Swing Components

in the javax.swing package

Lightweight

Heavyweight

Classes in the java.awt

package

1

LayoutManager

*

JPanel

The helper classes are not subclasses of
Component. They are used to describe

the properties of GUI components such as

graphics context, colors, fonts, and

dimension.

COP 3330: GUIs In Java – Part 1 Page 7 © Dr. Mark Llewellyn

Swing vs. AWT (Abstract Windows Toolkit)

• When Java was introduced, the GUI classes were bundled into a library
known as the Abstract Windows Toolkit (AWT).

• For every platform on which Java runs, the AWT components are
automatically mapped into platform-specific components through their
respective agents, known as peers.

• AWT is fine for developing simple GUIs, but not for developing
comprehensive GUI projects. In addition, AWT is prone to platform-
specific bugs, because its peer-based approach relies heavily on the
underlying platform.

• With the release of Java 2, the AWT user-interface components were
replaced by a more robust, versatile, and flexible library known as the
Swing components.

• Swing components are painted directly on canvases using Java code,
except for classes that are subclasses of java.awt.Window, or
java.awt.Panel, which must be drawn using native GUI on a
specific platform.

COP 3330: GUIs In Java – Part 1 Page 8 © Dr. Mark Llewellyn

Swing vs. AWT (Abstract Windows Toolkit)

• Swing components are less dependent on the target platform and use
less of the native GUI resource.

• For this reason, Swing components that don’t rely on the native GUI
resource are referred to as lightweight components, and AWT
components are referred to as heavyweight components.

• To distinguish new Swing component classes from their AWT
counterparts, the names of Swing GUI components begin with a
prefixed J.

• Although AWT components are still supported in Java 2, it is better to
learn how to program suing Swing components, because the AWT
user-interface components will eventually fade away.

• We will look at Swing components exclusively from here on.

• The UML class hierarchy for the JComponent class is shown on the
next page.

COP 3330: GUIs In Java – Part 1 Page 9 © Dr. Mark Llewellyn

JComponent Hierarchy

 JMenuItem

 JCheckBoxMenuItem

AbstractButton

JComponent

 JMenu

 JRadioButtonMenuItem

 JToggleButton JCheckBox

 JRadioButton

 JComboBox

 JInternalFrame

 JLayeredPane

 JList

 JMenuBar

 JOptionPane

 JPopupMenu

 JProgressBar

 JFileChooser

 JScrollBar

 JScrollPane JSeparator JSplitPane

 JSlider

 JTabbedPane

 JTable JTableHeader

 JTextField JTextComponent

 JTextArea

 JToolBar JToolTip

 JTree

 JRootPane

 JPanel

 JPasswordField

 JColorChooser

 JLabel

 JEditorPane

 JSpinner

 JButton

COP 3330: GUIs In Java – Part 1 Page 10 © Dr. Mark Llewellyn

Swing GUI Components

• Component is a superclass of all user-interface classes, and
JComponent is a superclass of all the lightweight Swing
components.

• Since JComponent is an abstract class, you cannot use new
JComponent() to create an instance of JComponent. However,
you can use the constructors of concrete subclasses of JComponent
to create JComponent instances.

• It is important, if you are going to do any serious GUI programming in
Java, to become familiar with the class inheritance hierarchy. For
example, the following statements will all display true.

Button jbtOK = new JButton(“OK”);

System.out.println(jbtOK instanceof JButton); //true

System.out.println(jbtOK instanceof AbstractButton); //true

System.out.println(jbtOK instanceof JComponent); //true

System.out.println(jbtOK instanceof Container); //true

System.out.println(jbtOK instanceof Component); //true

System.out.println(jbtOK instanceof Object); //true

COP 3330: GUIs In Java – Part 1 Page 11 © Dr. Mark Llewellyn

GUI Container Classes

Container Class Description

java.awt.Container Used to group components. Frames, panels, and applets are its

subclasses.

java.swing.JFrame A window not contained inside another window. It is the container

that holds other Swing user-interface components in Java GUI

applications.

java.swing.JPanel An invisible container that holds user-interface components.

Panels can be nested. You can place panels inside a container that
includes a panel. JPanel is often used as a canvas to draw

graphics.

java.swing.JApplet A subclass of Applet. You must extend JApplet to create a

Swing-based Java applet.

java.swing.JDialog A pop-up window or message box generally used as a temporary

window to receive additional information (input) from the user or

to provide notification that an event has occurred. We’ve used

these from time to time so far this semester and you will be using

them in your third programming assignment.

COP 3330: GUIs In Java – Part 1 Page 12 © Dr. Mark Llewellyn

GUI Helper Classes

Helper Class Description

java.awt.Graphics An abstract class that provides a graphical context for drawing

strings, lines, and simple shapes.

java.awt.Color Deals with the colors of GUI components. For example, you can

specify background or foreground colors in components like

JFrame and JPanel, or you can specify colors of lines, shapes, and

strings in drawings.

java.awt.Font Specifies fonts for the text and drawings on GUI components. For

example, you can specify the font type (e.g., SansSerif), style

(e.g., bold), and size (e.g., 24 pt) for the text on a button.

java.awt.FontMetrics An abstract class used to get the properties of the fonts.

java.awt.Dimension Encapsulates the width and height of a component (in integer

precision) in a single object.

java.awt.LayoutManager An interface whose instances specify how components are

arranged in a container.

COP 3330: GUIs In Java – Part 1 Page 13 © Dr. Mark Llewellyn

NOTE

• The helper classes are in the java.awt package.

• The Swing components do not replace all the

classes in AWT, only the AWT GUI component

classes (e.g., Button, TextField,

TextArea).

• The AWT helper classes remain unchanged.

COP 3330: GUIs In Java – Part 1 Page 14 © Dr. Mark Llewellyn

Frames

• To create a user interface, you need to create either a frame
or an applet to hold the user-interface components.

• We’re not concerned with applets here, so we’ll be
creating a frame.

• To create a frame, use the JFrame class.

 javax.swing.JFrame

+JFrame()

+JFrame(title: String)

+setSize(width: int, height: int): void

+setLocation(x: int, y: int): void

+setVisible(visible: boolean): void

+setDefaultCloseOperation(mode: int): void

+setLocationRelativeTo(c: Component):
void

+pack(): void

Creates a default frame with no title.

Creates a frame with the specified title.

Specifies the size of the frame.

Specifies the upper-left corner location of the frame.

Sets true to display the frame.

Specifies the operation when the frame is closed.

Sets the location of the frame relative to the specified component.

If the component is null, the frame is centered on the screen.

Automatically sets the frame size to hold the components in the

frame.

COP 3330: GUIs In Java – Part 1 Page 15 © Dr. Mark Llewellyn

Frames

This frame is 400 pixels wide (x-axis) and 300

pixels high (y-axis). The frame is not displayed
until the frame.setVisible(true) method is

invoked. If the setSize method is not used, the

frame will be sized to display just the title bar.

Using the method
setLocationRelativeTo(null) centers the

frame on the screen.

setSize should be invoked before

setLocationRelativeTo(null).

Title bar
Content pane

The EXIT_ON_CLOSE parameter tells

the program to terminate when the frame

is closed. If this statement is not used,

the program does not terminate when the

frame is closed and you kill the program

externally.

COP 3330: GUIs In Java – Part 1 Page 16 © Dr. Mark Llewellyn

Frames

This frame is 400 pixels wide (x-axis) and 300

pixels high (y-axis). The frame is not displayed
until the frame.setVisible(true) method is

invoked. If the setSize() method is not used,

the frame will be sized to display just the title bar.

Using the method
setLocationRelativeTo(null) centers the

frame on the screen.
setSize() should be invoked before

setLocationRelativeTo(null).

Title bar
Content pane

The EXIT_ON_CLOSE parameter tells

the program to terminate when the frame

is closed. If this statement is not used,

the program does not terminate when the

frame is closed and you kill the program

externally.

COP 3330: GUIs In Java – Part 1 Page 17 © Dr. Mark Llewellyn

Adding Components To A Frame

Since JDK 1.5 you can place components into
the content pane by invoking a frame’s add

method. This is called content pane

delegation and strictly speaking, it adds a

component to the content pane of a frame.

Typically, we’ll just say that it adds a

component to a frame (that it goes into the

content pane is implied). To remove a
component from a frame use the remove()

method.

COP 3330: GUIs In Java – Part 1 Page 18 © Dr. Mark Llewellyn

NOTE

• Run the
SimpleFrameExampleWithComponents

program and resize the frame to various sizes.

• What happens to the OK button? It always remains
centered in the frame regardless of its size.

• This is because components are placed into a frame
by the content panes’ layout manager, and the
default layout manager for the content pane places
the button in the center.

• We’ll deal with layout managers next, but try this
program before you go any further.

COP 3330: GUIs In Java – Part 1 Page 19 © Dr. Mark Llewellyn

Layout Managers

• In many window-based systems, the user-interface
components are arranged by using hard-coded pixel
measurements. For example, put a button at location
(10,10) in the window. Using hard-coded pixel
measurements, the GUI might look fine on one system but
be virtually unusable on another.

• Java’s layout managers provide a level of abstraction that
automatically maps your GUI on all windows-based
systems.

• The Java GUI components are placed in containers, where
they are arranged by the container’s layout manager. In the
previous example, we did not specify where to put the OK
button, but Java knew where to put it because the layout
manager works “behind the scenes” to place components in
the correct locations.

COP 3330: GUIs In Java – Part 1 Page 20 © Dr. Mark Llewellyn

Layout Managers

• A layout manager is created using a layout manager class.

• Every layout manager class implements the LayoutManager
interface.

• Layout managers are set in containers using the
setLayout(LayoutManager) method.

• For example, you can use the following statements to create an
instance of XLayout and set it in a container:

• Java has several different layout managers, right now we’ll focus
on three basic layout managers: FlowLayout, GridLayout,
and BorderLayout.

LayoutManager layoutManager = new XLayout();

container.setLayout(layoutManager);

COP 3330: GUIs In Java – Part 1 Page 21 © Dr. Mark Llewellyn

FlowLayout

• FlowLayout is the simplest (and least versatile) layout
manager in Java.

• The components are arranged in the container from left to
right in the order in which they were added.

• When one row is filled, a new row is started.

• You can specify the way the components are aligned by
using one of three constants: FlowLayout.RIGHT,
FlowLayout.CENTER, and FlowLayout.LEFT.

• You can also specify the gap between components in pixels.

• The constructors and methods in FlowLayout are shown
on the next page.

COP 3330: GUIs In Java – Part 1 Page 22 © Dr. Mark Llewellyn

FlowLayout

java.awt.FlowLayout

-alignment: int

-hgap: int

-vgap: int

+FlowLayout()

+FlowLayout(alignment: int)

+FlowLayout(alignment: int, hgap:

int, vgap: int)

The alignment of this layout manager (default: CENTER).

The horizontal gap of this layout manager (default: 5 pixels).

The vertical gap of this layout manager (default: 5 pixels).

Creates a default FlowLayout manager.

Creates a FlowLayout manager with a specified alignment.

Creates a FlowLayout manager with a specified alignment,
horizontal gap, and vertical gap.

The get and set methods for these data fields are provided in

the class, but omitted in the UML diagram for brevity.

COP 3330: GUIs In Java – Part 1 Page 23 © Dr. Mark Llewellyn

FlowLayout Example

COP 3330: GUIs In Java – Part 1 Page 24 © Dr. Mark Llewellyn

FlowLayout Example

COP 3330: GUIs In Java – Part 1 Page 25 © Dr. Mark Llewellyn

FlowLayout Example

COP 3330: GUIs In Java – Part 1 Page 26 © Dr. Mark Llewellyn

FlowLayout Example

COP 3330: GUIs In Java – Part 1 Page 27 © Dr. Mark Llewellyn

Comments On The ShowFlowLayout Program
• The FlowLayoutManagerExample program is created in a

different style than the SimpleFrameExampleWithComponents
program.

• The SimpleFrameExampleWithComponents program created a
frame using the JFrame class. The
FlowLayoutManagerExample program creates a class named
FlowLayoutManagerExample that extends the JFrame class.
The main method in this program creates an instance of
FlowLayoutManagerExample. The constructor of
FlowLayoutManagerExample constructs and places the
components in the frame.

• This is the preferred style for creating GUI applications for three
reasons:

1. Creating a GUI applications means creating a frame, so it is natural to define a
frame to extend JFrame.

2. The frame may be further extended to add new components or features.

3. The class can be easily reused. For example, you can create multiple frames
by creating multiple instances of the class.

COP 3330: GUIs In Java – Part 1 Page 28 © Dr. Mark Llewellyn

Comments On The ShowFlowLayout Program

• In addition, using one style makes programs easier to read.
From now on, most of the GUI classes that we construct
will extend the JFrame class. The constructor of the main
class constructs the user interface. The main method
creates an instance of the main class and then displays the
frame.

• In the FlowLayoutManagerExample program, the
FlowLayout manager is used to place components in a
frame. If you resize the frame, the components are
automatically rearranged to fit in the new size frame (see
pages 23-26).

• The setTitle method is defined in the
java.awt.Frame class. Since JFrame is a subclass of
Frame, you can use it to set a title for an object of
JFrame.

COP 3330: GUIs In Java – Part 1 Page 29 © Dr. Mark Llewellyn

Comments On The ShowFlowLayout Program

• An anonymous FlowLayout object was created in the statement:
setLayout(new FlowLayout(FlowLayout.LEFT,10,20); This code is
equivalent to:

FlowLayout layout = new FlowLayout(FlowLayout.LEFT,10,10);

setLayout(layout);

This code creates an explicit reference to the object layout of the
FlowLayout class. The explicit reference is not necessary, in this
case, because the object is not directly referenced in the
FlowLayoutManagerExample class.

• Don’t forget to put the new operator before a layout manager class
when setting a layout style – for example, setLayout(new
FlowLayout()).

• Notice that the constructor FlowLayoutManagerExample() does
not explicitly invoke the constructor JFrame(), but the constructor
JFrame() is invoked implicitly – recall constructor chaining!

COP 3330: GUIs In Java – Part 1 Page 30 © Dr. Mark Llewellyn

GridLayout

• The GridLayout manager arranges components

in a grid (matrix) formation with the number of

rows and columns defined by the constructor.

• The components are placed in the grid in a row

major order (i.e., left to right beginning with row

1, then the second row, and so on), in the order in

which they are added.

• The constructors and methods in GridLayout

are shown on the next page.

COP 3330: GUIs In Java – Part 1 Page 31 © Dr. Mark Llewellyn

GridLayout

java.awt.GridLayout

-rows: int

-columns: int

-hgap: int

-vgap: int

+GridLayout()

+GridLayout(rows: int, columns: int)

+GridLayout(rows: int, columns: int,

hgap: int, vgap: int)

The number of rows in this layout manager (default: 1).

The number of columns in this layout manager (default: 1).

The horizontal gap of this layout manager (default: 0).

The vertical gap of this layout manager (default: 0).

Creates a default GridLayout manager.

Creates a GridLayout with a specified number of rows and columns.

Creates a GridLayout manager with a specified number of rows and

columns, horizontal gap, and vertical gap.

The get and set methods for these data fields are provided in

the class, but omitted in the UML diagram for brevity.

COP 3330: GUIs In Java – Part 1 Page 32 © Dr. Mark Llewellyn

GridLayout Specifics

• You can specify the number of rows and columns
in the grid following these basic rules:

– The number of rows and columns can be zero, but not
both. If one is zero and the other is nonzero, the
nonzero dimension is fixed, while the zero dimension
is determined dynamically by the layout manager.

• For example, if you specify zero rows and three columns for a
grid that has ten components, GridLayout creates three fixed
columns of four rows, with the last row containing only one
component. If you specify three rows and zero columns for a
grid with ten components, GridLayout creates three fixed
rows of four columns, with the last row containing two
components.

COP 3330: GUIs In Java – Part 1 Page 33 © Dr. Mark Llewellyn

GridLayout Specifics

– If both the number of rows and columns are nonzero,

the number of rows is the dominating parameter; that

is, the number of rows is fixed, and the layout

manager dynamically calculates the number of

columns.

• For example, if you specify three rows and three columns for a

grid that has ten components, GridLayout creates three fixed

columns of four rows, with the last row containing two

components.

• The example on the next page illustrates the

GridLayout manager.

COP 3330: GUIs In Java – Part 1 Page 34 © Dr. Mark Llewellyn

GridLayout Example

COP 3330: GUIs In Java – Part 1 Page 35 © Dr. Mark Llewellyn

GridLayout Example

All components are equal size,

number of rows, number of

columns and gap size remains

unchanged in larger frame.

COP 3330: GUIs In Java – Part 1 Page 36 © Dr. Mark Llewellyn

Comments On The ShowGridLayout Program

• What would happen if the setLayout where replaced
with setLayout(new GridLayout(4,2,10,10))?

• How about if it were replaced with

setLayout(new GridLayout(2,2,10,10))?

• Try both of these yourself to see the effect.

• NOTE: The order in which the components are added to the
container is important in both FlowLayout and
GridLayout. It determines the location of the
components in the container. See the modified version of
the GridLayout program on the next page to see this
effect.

COP 3330: GUIs In Java – Part 1 Page 37 © Dr. Mark Llewellyn

GridLayout Example

COP 3330: GUIs In Java – Part 1 Page 38 © Dr. Mark Llewellyn

BorderLayout

• The BorderLayout manager divides the
window into five areas: East, South, West, North,
and Center.

• Components are added to a BorderLayout by
using add(Component, index) where
index is a constant BorderLayout.EAST,
BorderLayout.SOUTH,
BorderLayout.WEST,
BorderLayout.NORTH,
BorderLayout.CENTER.

• The constructors and methods in
BorderLayout are shown on the next page.

COP 3330: GUIs In Java – Part 1 Page 39 © Dr. Mark Llewellyn

BorderLayout

java.awt.BorderLayout

-hgap: int

-vgap: int

+BorderLayout()

+BorderLayout(hgap: int, vgap: int)

The horizontal gap of this layout manager (default: 0).

The vertical gap of this layout manager (default: 0).

Creates a default BorderLayout manager.

Creates a BorderLayout manager with a specified number of

horizontal gap, and vertical gap.

The get and set methods for these data fields are provided in
the class, but omitted in the UML diagram for brevity.

COP 3330: GUIs In Java – Part 1 Page 40 © Dr. Mark Llewellyn

BorderLayout

• The components are laid out according to their
preferred sizes and where they are placed in the
container.

• The North and South components can stretch
horizontally; the East and West components can
stretch vertically, the Center component can
stretch both horizontally and vertically to fill any
empty space.

• The example program on the next page illustrates
a border layout. The program adds five buttons
labeled East, South, West, North, and Center into
the frame using a BorderLayout manager.

COP 3330: GUIs In Java – Part 1 Page 41 © Dr. Mark Llewellyn

BorderLayout Example

COP 3330: GUIs In Java – Part 1 Page 42 © Dr. Mark Llewellyn

Properties of Layout Managers
• Layout managers have properties that can be changed dynamically.

FlowLayout has alignment, hgap, and vgap properties (see
page 21). You can use the setAlignment, setHgap, and
setVgap methods to specify the alignment and the horizontal and
vertical gaps.

• GridLayout has the rows, columns, hgap, and vgap properties (see
page 30). You can use the setRows, setColumns, setHgap,
and setVgap methods to specify the number of rows, the number of
columns, and the horizontal and vertical gaps.

• BorderLayout has the hgap, and vgap properties (see page
38). You can use the setHgap and setVgap methods to specify
the horizontal and vertical gaps.

• In the previous three examples for the three different layout managers,
an anonymous layout manager was used because the properties of the
layout manager did not need to change once it was created.

COP 3330: GUIs In Java – Part 1 Page 43 © Dr. Mark Llewellyn

Properties of Layout Managers
• If you need to change the properties of a layout manager dynamically,

the layout manager must be explicitly referenced by a variable.

• You can then change the properties of the layout manager through the
variable.

• For example, the following code creates a layout manager and sets its
properties.

//create a layout manager

FlowLayout layout = new FlowLayout();

//set layout manager properties

layout.setAlignment(FlowLayout.RIGHT);

layout.setHgap(10);

layout.setVgap(20);

COP 3330: GUIs In Java – Part 1 Page 44 © Dr. Mark Llewellyn

The validate Method

• A container can have only one layout manager at a

time.

• You can change a container’s layout manager by

using the setLayout(aNewLayout) method

and then use the validate() method to force

the container to again lay out the components in

the container using the new layout manager.

• The example on the next page illustrate this

method.

COP 3330: GUIs In Java – Part 1 Page 45 © Dr. Mark Llewellyn

Initial layout as defined by

BorderLayout manager.

Altered layout after invoking
setLayout() and

validate() mehtods.

COP 3330: GUIs In Java – Part 1 Page 46 © Dr. Mark Llewellyn

The Color Class

• You can set colors for GUI components by using the
java.awt.Color class.

• Colors are made of red, green, and blue components
(RGB model), each represented by an unsigned byte
value that describes its intensity, ranging from 0 (darkest
shade) to 255 (lightest shade).

• You can create a color using the following constructor:
public Color (int r, int g, int b);

where r, g, and b specify a color by its red, green, and
blue components. For example:

Color color = new Color(128, 100, 100);

COP 3330: GUIs In Java – Part 1 Page 47 © Dr. Mark Llewellyn

The Color Class
• The arguments r, g, and b in the Color constructor are

between 0 and 255. If a value beyond this range is passed to the
argument, an IllegalArgumentException will occur.

• You can use setBackground(Color c) and
setForeground(Color c) methods defined in the
java.awt.Component class to set a component’s background and
foreground colors.

• You can also use one of the 13 standard colors (BLACK, BLUE,
CYAN, darkGRAY, GRAY, GREEN, lightGRAY,
MAGENTA, ORANGE, PINK, RED, WHITE, YELLOW) defined
as constants in java.awt.Color.

• The example on the next page modifies the ShowBorderLayout
program to color some of the buttons. (NOTE: I’ve only included the
modified code not the entire program this time.)

COP 3330: GUIs In Java – Part 1 Page 48 © Dr. Mark Llewellyn

COP 3330: GUIs In Java – Part 1 Page 49 © Dr. Mark Llewellyn

The Font Class
• You can create a font using the java.awt.Font class and set

fonts for the components using the setFont method in the
Component class.

• The constructor for Font is:

public Font(String name, int style, int size);

• You can choose a font name from SanSerif, Serif,
Monospaced, Dialog, or DialogInput, choose a style
from Font.Plain(0), Font.BOLD(1),
Font.ITALIC(2), and Font.BOLD +
Font.ITALIC(3), and specify a font size of any positive
integer.

• The example on the following page, modifies some of the
buttons in the ShowBorderLayout example, again, I’ve
included only the modified code.

COP 3330: GUIs In Java – Part 1 Page 50 © Dr. Mark Llewellyn

COP 3330: GUIs In Java – Part 1 Page 51 © Dr. Mark Llewellyn

A GUI For You To Try To Create

